
Journal of Food & Nutritional Sciences [2019; 1(2):55-72]      Open Access  
 

 

The Roles of Choline in Maintaining Optimal Health 

Adrian Taylor1 and Marica Bakovic1* 

 

1Department of Human Health and Nutritional Sciences, University of Guelph, N1G 2W1, Guelph, Ontario, 

Canada. 

 

 

 
 This work is licensed under a Creative Commons Attribution 4.0 International License. 

 

REVIEW 

 

Please cite this paper as: Taylor A and Bakovic M. The roles 

of choline in maintaining optimal health. Journal of Food & 

Nutritional Sciences [2019] 1(2): 55-72. 

 

*Corresponding Author: 

Dr. Marica Bakovic 

Department of Human Health and Nutritional Sciences, 

University of Guelph, N1G 2W1, Guelph, Ontario, Canada,  

E-mail: mbakovic@uoguelph.ca 

 

ABSTRACT 
 

 

Choline is an essential nutrient involved in 

membrane lipid formation, neurotransmission and one 

carbon metabolism. Most of dietary choline is produced 

from phosphatidylcholine, a phospholipid abundant in eggs, 

meat and dairy products. Choline deficiency is implicated in 

neuronal development, liver disease, insulin resistance, 

muscle damage and choline is also vital during fetal 

development. The focus of this review is to shed light on the 

critical contributions of choline to membrane 

phosphatidylcholine formation and energy homeostasis. 

Moreover, this review will also focus on the role of choline 

in protecting against developmental disorders, particularly 

during pregnancy and fetal development while also focusing 

on adult onset metabolic disorders such as non-alcoholic 

liver disease and diabetes. 

 

Key Words: Choline; Betaine; Neurotransmission; 
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Introduction 

Choline is an essential nutrient involved in 

membrane lipid formation, neurotransmission and one 

carbon metabolism. In addition to free choline, most dietary 

choline is produced from the phospholipid 

phosphatidylcholine (PC) [1]. Choline Adequate Intake (AI) 

of 550 mg/day for men, 425 mg/day for women, 450 

mg/day for pregnant women and 550 mg/day for lactating 

women and has been considered a required dietary nutrient 

by the US Institute of Medicine’s Food and Nutrition Board 

since 1998. However, numerous studies have reported that 

4 in 5 Americans are not reaching the AI for choline. The 

Framingham Heart Study reported that Americans 

consumed on average 203 mg/day of choline whereas the 

Nurses’ Health Study and the Atherosclerosis Risk in 

Communities study reported 293 and 217 mg/day choline 

intake respectively, far below the AI value [2-5]. Choline is 

most abundant in eggs, meat and dairy products [6]. To help 

improve choline intake, choline rich cereal based functional 

foods [7], milk [8] and goats [9] have been developed. 

Choline deficiency is implicated in fatty liver [10], 

insulin resistance [11] and muscle damage in humans [12] 

and rodents [13]. Humans who have mutations in PCYT1A, 

the gene that encodes the rate limiting enzyme for PC 

synthesis via the CDP-choline pathway, have been shown to 

have severe insulin resistance and lipodystrophy [14]. In 

mice, choline has been shown to be particularly important 

during fetal development as gestational deficiency leads to 

memory and learning deficits later in life [15]. The focus of 

this review is to shed light on the importance of choline in 

numerous metabolic functions and suboptimal choline 

intake can hinder the ability for humans to carry out these 

functions. 
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Upon entry into the cell, most of choline is 

incorporated into phospholipid phosphatidylcholine (PC) via 

CDP-choline (Kennedy) pathway (Figure 1). In the first step 

of the pathway choline is phosphorylated by choline kinase 

(CK) to generate phosphocholine (PCho). PCho is then 

coupled with CTP by the CTP: phosphocholine 

cytidylyltransferase (CCT/Pcyt1) to generate CDP-choline. In 

the final step of the pathway, CDP-choline is condensed 

with diacylglycerol (DAG) by CDP-choline: DAG 

phosphotransferase in the endoplasmic reticulum to yield 

PC [16-20]. In the liver, PC is additionally generated from 

another phospholipid, phosphatidylethanolamine (PE), by a 

three-step methylation reaction catalyzed by PE 

methyltransferase (PEMT) [21]. This is an important backup 

pathway that prevents choline deficiencies when demands 

for choline are high, such as during embryonal 

development, pregnancy, and lactation [22]. Moreover, 

PEMT formed PC is incorporated into very-low density 

lipoproteins and as such transported from the liver into 

other tissues [23]. PEMT formed PC is enriched with n-3 

PUFA, which is crucial for providing fetuses with n-3 PUFA 

for proper developmental programming [24] and the 

optimal function of neurological tissues [25- 27].  

Degradation of PC by phospholipases is a critical 

element of choline homeostasis [28]. Choline is released 

from PC by phospholipase D (PLD), phospholipase A2 (PLA2) 

and then PLD, or by the PC base-exchange mechanisms 

(PSS1) as further described in Figure 1. PC is also converted 

into glycerophosphocholine (GPC), a prominent 

acetylcholine precursor and osmolyte via PLA2 [29]. PLD1 

and PLD2 cleave PC between the phosphate moiety and 

choline head group to generate free choline and 

phosphatidic acid (PA). PA is an important lipid intermediate 

utilized for DAG formation or directly involved in signaling 

pathways such as the mTOR pathway [30]. Moreover, in 

genetic disorders with choline deficiencies such as postural 

tachycardia syndrome, there is an increase in PLD activity 

apparently in an attempt to generate more intracellular 

choline when choline transport in reduced [31]. Free choline 

is also released at the mitochondria associated ER 

membranes (MAM) when PC is converted into 

phosphatidylserine (PS) by PS synthase 1 (PSS1) but the 

exact utilization of the choline formed at the MAM is not 

known [32]. 

 

Choline oxidative demethylation is linked to 

energy metabolism  

Aside from its role in PC synthesis, choline is 

oxidized in mitochondria of liver and kidney to betaine. 

Betaine is a methyl group donor in the one-carbon 

(methyonine-homocysteine) cycle (Figure 2) [33-35]. 

Choline and betaine supplementation to positively affect 

one carbon metabolism to correct perturbations in fatty 

acid (FA) oxidation and energy balance which are evident in 

obesity. In mice with excess fat accumulation, 4 weeks of 

choline supplementation increased plasma glycerol and 

glycine, which are products of increased lipolysis and 

choline oxidation respectively [36]. Moreover, plasma 

creatine and sarcosine were reduced, further indicating an 

increase in homocysteine/methionine cycling to breakdown 

choline [36]. In this model, SAM was more devoted to 

maintaining cellular PC balance, which is often perturbed in 

obesity, instead of guanidinoacetate methylation for 

creatine synthesis. In the skeletal muscle of mice, the main 

beneficial effects of supplemental choline included the 

reduction of energy stored as free FA, DAG and TAG and 

increasing energy utilization [37]. Mice with excess fat 

accumulation supplemented with choline or supplemented 

for 8 weeks with betaine showed increased oxidative 

demethylation of these methyl donors [38]. Oxidative 

demethylation of choline and betaine is beneficial as this 

requires energy in the form of reducing equivalents 

produced from succinate and α-ketoglutarate in the TCA 

cycle to be broken down [38]. In essence, choline and 

betaine breakdown increased metabolic demand, thereby 

decreasing the propensity for energy to be stored as fat 

throughout the body. 

 

Choline and betaine protect against fatty liver 

and insulin resistance 
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Non-alcoholic fatty liver disease (NAFLD) has 

become the most prominent chronic disease in humans and 

its prevalence has risen concomitant with insulin resistance, 

type 2 diabetes (T2D) and obesity over the past 30 years 

[39]. NAFLD comprises a wide spectrum of pathologies, 

ranging from lipid droplets and simple steatosis to hepatitis 

to fibrosis and cirrhosis [40]. Dietary factors such as high 

caloric intake, high fat intake [41], high fructose intake, 

refined grain and processed meat consumption have been 

positively correlated with NAFLD development [42]. Though 

extensively studied, the mechanism responsible for the 

pathogenesis of NAFLD remains poorly understood. 

Dietary choline is an important nutrient for 

maintaining optimal hepatic function. Choline deficiency has 

widespread effects on the one carbon metabolic system and 

lipid synthesis in the liver. In choline deficient mice, SAM 

concentrations were decreased by 50% after the 

consumption of a choline deficient diet for 2 weeks [43]. 

Due to this decrease in SAM concentration, there is a 

concomitant decrease in PEMT activity, and therefore PE 

derived PC phospholipid content [44]. The PEMT enzyme is 

important for the synthesis of PC used in very low-density 

lipoproteins (VLDL), which is critical for TAG export from the 

liver [45]. PC is a critical component of VLDL particles and a 

diminished capacity for the liver to synthesize PC via the 

PEMT pathway results in decreased lipoprotein secretion 

and TAG accumulation in hepatocytes [46]. Hepatic 

steatosis resulting from choline deficiency is a hallmark 

feature of VLDL deficiency in species such as humans and 

cats [47]. Choline supplementation improves hepatic 

function in mice by normalizing the expression of genes 

involved in lipogenesis [SREBP1, FAS, SCD1] and lipolysis 

[ATGL, HSL, LPL], as well as FA oxidation [PPARα] and 

mitochondrial biogenesis [PGC-1α] [36]. These changes 

result in a decrease in hepatic TAG [36, 48] and plasma 

acylcarnitines, which is an indication of improvements in 

mitochondrial fatty acid metabolism [36, 49]. 

Betaine has been shown to be hepatoprotective in 

mice with respect to numerous toxic substances such as 

ethanol, lipopolysaccharide and dimethylnitrosamine [50 - 

52]. The liver injury resulting from these toxicants is largely 

due to altered sulfur amino acid metabolism, and betaine 

has been shown to be beneficial in this regard [53, 54]. 

Hepatocyte cell volume in mammalian systems is often 

altered during oxidative stress and these changes in cell 

volume activate signal transduction cascades in an attempt 

to allow the cell to respond to stress more effectively [55, 

56]. BHMT, CHDH and PEMT expression is increased in 

hypotonic conditions, indicating a coordinated response to 

increase cell volume and regenerate methionine from Hcy 

for eventual methyl group donation [57]. Additionally, 

betaine is a lipotropic compound and helps to increase the 

levels of SAM and GSH in the liver which are critical for 

maintaining proper methylation and redox states [58]. 

Betaine has been shown in mice to reduce body 

weight induced by HFD consumption as well as hepatic and 

visceral fat mass by increasing AMPK activation [59]. AMPK 

is a positive regulator of fatty acid oxidation and decreases 

the expression of genes such as SREBP-1c, ACC and FAS 

which promote lipogenesis [60]. Furthermore, AMPK can 

directly phosphorylate PGC-1α to stimulate mitochondrial 

biogenesis [61]. Betaine has also been shown to reverse 

increased serum insulin levels and improve glucose 

tolerance [62] while also reducing serum TAG and 

cholesterol levels. These findings are supplemented by the 

activation of insulin signaling in the liver as seen by 

increasing phosphorylation of IRS1 and activation of Akt 

[63]. 

In mice, plasma acyl-carnitine levels are lowered 

substantially with choline and betaine supplementation, 

which is beneficial as an abundance of acyl-carnitines in the 

plasma is indicative of inefficient mitochondrial FA 

oxidation, a metabolic issue that often affects obese 

individuals [36, 64]. As a result, acyl-carnitine levels can 

provide an indication of the ability of the cell to oxidize FA 

[65] and to maintain optimal mitochondrial function [66]. In 

mice, long chain acyl-CoA species are critical regulators of 

metabolism as they inhibit mitochondrial adenine 

nucleotide translocase [ANT], which regulates ATP/ADP 

exchange across the inner mitochondrial membrane [66]. 

Additionally, malonyl-CoA is an allosteric inhibitor of CPT1, 

the rate limiting enzyme in the oxidation of long chain fatty 
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acyl-CoA by facilitating its entry into the mitochondrial 

matrix. Moreover, choline supplementation, decreased 

expression of genes which are critical for fatty acid synthesis 

[FAS and ACC] while the expression of genes involved with 

FA oxidation was increased [PPARα and PGC-1α] [37]. 

Supplementation of choline and betaine in vivo has 

been shown to ameliorate perturbations with lipid 

metabolism that arise in obesity. Choline and betaine 

supplementation in mice decreased liver and adipose tissue 

weight while also reducing lipid droplet size which is largely 

due to decreased FA incorporation into TAG [37]. In 

addition, betaine supplementation significantly decreased 

plasma TAG content while choline supplementation reduced 

collagen deposition, indicating decreased inflammation and 

fibrosis throughout the liver [38]. Membrane composition 

was also remodeled with choline supplementation as the 

ratio of important lipid raft components FC: SM was 

increased [37]. The optimal balance between FA oxidation 

and lipogenesis was restored with choline supplementation 

by activating the main regulator of skeletal muscle FA 

oxidation AMPK [36, 37]. Subsequently, mTORC1 activation 

was decreased which in turn facilitate a decrease in 

SREBP1c nuclear translocation for lipogenic gene 

transcription [37]. With choline supplementation, glycogen 

content, which is often depleted in insulin resistant skeletal 

muscle, was also restored, indicating an enhanced ability to 

store glucose taken up from the blood. 

Therefore, choline and betaine are critical for 

mitigating the development of NAFLD. Choline and betaine 

both decrease lipid accumulation in the liver while also 

decreasing hepatic fibrosis. Metabolism is impacted by 

stimulating TAG degradation by lipolysis to generate a 

fasted energy deficient state. Choline is the predominant 

phospholipid component of VLDL which is important for 

exporting TAG from the liver. Improving dietary choline and 

betaine levels has promoted fatty acid oxidation by 

increasing AMPK activation and improving insulin signaling 

rodent models [37]. Despite considerable mechanistic 

research, there is no clear physiological concentration of 

choline or betaine that is considered adequate for 

ameliorating fatty liver or insulin. However, as the majority 

of Americans are deficient in choline [2], reaching the AI for 

choline should help diminish the incidence of fatty liver [10] 

and insulin resistance [11].  

 

The role of choline and epigenetics in pregnancy 

and gestation 

During pregnancy, maternal choline affects 

metabolic and physiological functions of the offspring 

through numerous inter-related mechanisms. Maternal 

choline is vital for optimal placental development and 

maintaining optimal fetal growth [67, 68]. The increased 

requirement for choline during gestation is largely due to an 

increased use of betaine as a methyl group donor and a 

higher demand for choline utilization for PC synthesis [69]. 

This could lead to substantial depletion of choline derived 

methyl donors such as betaine and SAM in pregnant women 

[70, 71]. A reduction in choline and betaine leads to 

elevated homocysteine and decreased SAM levels, thereby 

decreasing methyltransferase activity as SAM is a positive 

regulator of MAT [72]. 

Genetic variants that increase choline 

requirements can leave an individual susceptible to choline 

inadequacy [73], and this effect can be magnified during 

reproduction [74]. Some of these SNPs are located in genes 

such as PEMT (rs12325817), choline dehydrogenase (CHDH) 

(rs12676) and MTHFR (rs1801133) which are critical for 

proper functioning of the one carbon metabolic system [75-

77]. In addition, estimations from the NHANES study 

estimated that only 1 out of 10 pregnant women in the US 

are consuming adequate amounts of choline [78], which is a 

troubling statistic as choline is a vital nutrient for fetal 

development. 

The prenatal period is vital for the establishment 

and maintenance of the epigenome [79]. The DNA 

methylation patterns of gametes are mostly abolished after 

conception; therefore de novo methylation is crucial for 

gene silencing [80]. DNA methylation is closely linked to 

histone modification in order to facilitate time-sensitive 

alterations throughout fetal development [81]. In addition, 

the fetal epigenome can be affected by numerous maternal 

environmental factors such as nutrition [82]. During 
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pregnancy, it has been determined that maternal choline 

supply has dramatic effects on the fetal epigenome [83]. 

The fetuses of choline deficient mothers exhibited 

hypermethylation of the insulin growth factor 2 (IGF2) gene 

[84], which is critical for embryonic development [85]. 

Additionally, choline deficient mothers exhibited 

hypomethylation of DNMT1 and this was correlated with 

the epigenetic and expression changes of IGF2, suggesting 

that maternal choline deficiency exerted its effects on IGF2 

via DNMT1 hypomethylation [86]. 

Maternal choline intake during pregnancy is critical 

for optimal cognitive function [87, 88]. There is substantial 

evidence that adequate maternal choline levels during 

pregnancy are required for optimal hippocampal function, 

and therefore maintaining cognitive abilities [89-91]. 

Choline deficiency during pregnancy has been shown to 

decrease hippocampal methylation of the cyclin dependent 

kinase inhibitor 3 (CDKN3) gene and increase the expression 

of kinase associated phosphatase [Kap], a known inhibitor 

of cell proliferation [92]. Maternal PC levels during 

pregnancy alter hippocampal cholinergic function of the 

offspring, which is associated with depression and anxiety 

later in life [93]. This is because PC is important for ensuring 

adequate neuron density [94], propagation of intracellular 

signals [95] and optimal membrane configuration [96]. PC 

can also be used for acetylcholine synthesis, and therefore 

cholinergic transmission [97]. Choline intake is an important 

component of neurological development [98] as it has a 

large influence on structural integrity, function and cell 

signaling within the brain [99, 100]. 

Additionally, choline supplementation in pregnant 

women has been shown to increase placental FATP4 

content, which transports DHA to the fetus for neurological 

development [101]. Moreover, maternal choline 

supplementation increases the levels of DHA-enriched PC 

[PC-DHA], which is mainly synthesized by the PEMT pathway 

[102]. The PEMT pathway is especially important for 

fortifying phospholipids with DHA as this enzyme prefers 

PE-DHA as a substrate [103]. This is in contrast to the CDP-

choline pathway which predominantly synthesizes PC 

containing saturated medium length FA [104]. With this in 

mind, maternal choline supplementation can serve as a 

dietary approach to supply the developing fetus with DHA. 

Umbilical cord choline content can be up to 5-fold higher 

than what is observed in maternal blood, further 

emphasizing the importance of choline in fetal development 

[99]. Furthermore, the PEMT gene has an estrogen response 

element within its promoter region, meaning that its 

expression can be induced when estrogen is present [101]. 

Estrogen is typically abundant during pregnancy, and is 

therefore important for the fortification of the developing 

fetus with PC-DHA [101]. In fact, women with SNPs in within 

the estrogen response element are much more susceptible 

to developing choline deficiency [101]. Prenatal omega-3 

fatty acid supplementation in pregnant dams that 

consuming a diet low in folate and vitamin B12 normalizes 

global DNA methylation levels in the placenta and the brain 

[104]. This implies that omega-3 fatty acids are involved in 

modifying methylation patterns [104]. 

Taken together, choline and PC have critical roles 

with respect to pregnancy and fetal development. Choline is 

a critical molecule which can ultimately serve as a methyl 

donor within the one carbon metabolic system. As a result, 

choline deficiency has a negative impact on fetal 

development due to perturbed epigenetic regulation. In 

addition, choline deficiency has detrimental effects on 

hippocampal development, and can lead to cognitive 

deficiencies. Lastly, PC is an important molecule for fetal 

DHA enrichment and hormones [i.e. estrogen] and enzymes 

[PEMT] help facilitate this process. 

 

Neuroprotective roles of choline 

Choline levels have been shown to be integral to 

maintaining optimal neurological function over time. As the 

number of older individuals in our population increases, the 

impact of choline deficiency on the health of these 

populations becomes more important. With aging, cerebral 

function becomes impaired through myelin degradation, 

decreased synaptic function and dysregulation of DNA 

methylation. Due to these pathologies, older adults 

experience cognitive decline and are increasingly affected 

by neurological disorders like Alzheimer’s disease [AD]. 
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Studies have established a positive correlation between 

individuals carrying mutations which alter MTHFR activity 

and AD, linking choline metabolism and neurological 

function. Choline can act as a reserve methyl donor when 

MTHFR function is diminished but this will deplete choline 

pools that are required for various neurological functions. 

These functions include the integration of choline into the 

neurotransmitter acetylcholine and lipids like PC, which are 

associated with hallmark neurological perturbations of AD 

such as memory impairment and anxiety [105]. Moreover, 

the quantity of lysoPC species, which are pro- inflammatory 

lipid mediators, as well as sphingolipid breakdown products 

have been found to be markedly increased in AD patients 

[106, 107]. 

The focus on nutrition has become increasingly 

important with regards to neurological disorders, largely 

because synaptic membranes require numerous nutrients 

to be synthesized. Van Wijk et al. [108] report that 

cognitively impaired subjects had lower circulating levels of 

choline and folate, both of which are fundamental to 

membrane phospholipid synthesis. Mellott et al. [109] have 

shown that neonatal choline consumption can mitigate AD 

related cognitive decline later in life by attenuating amyloid 

plaque formation. As in other models, in utero choline 

supplementation has been shown to prevent a decline in 

hippocampal neurogenesis in adulthood while also rescuing 

cholinergic functions, which are hallmarks of AD [110, 111]. 

In mice, maternal choline supplementation has therapeutic 

potential by normalizing the expression of genes involved 

with synaptic plasticity in offspring. This is key for protecting 

basal forebrain cholinergic neurons mitigating decline in 

spatial cognition [112]. Cytidine 5’-Diphosphocholine 

[citicoline], a PC precursor, has also been shown to improve 

cognitive performance in AD patients as a safe and effective 

agent to increase PC levels in the brain [113, 114]. 

 

Interplay between fatty acids and phospholipids 

in modulating membrane function  

 

It is widely conceived that fatty acid esterification 

in critical for efficiently incorporating n- 3 fatty acids into 

the brain [115, 116], and that phospholipids are important 

carriers of n- 3 fatty acids [26]. Esterified fatty acids are 

more readily absorbed into the body relative to fatty acids 

in TAG or unesterified fatty acids [117]. Additionally, n-3 

fatty acids are more resistant to oxidation when 

incorporated into phospholipids relative to TAG [118]. 

Moreover, fatty acids esterified in phospholipids relative to 

TAG are more bioavailable [119], which is especially 

important in brain development [120-122]. 

An important role of n-3 fatty acids is their role in 

modulating biophysical properties within the cell membrane 

which play a role in signal transduction cascades [123, 124]. 

For instance, Li et al. [2007] demonstrated that plasma 

membrane DHA content is integral for elevating eNOS 

activity by altering the lipid: protein interactions in caveolar 

microdomains, thereby facilitating the translocation of 

eNOS from the plasma membrane [125]. Moreover, glucose 

transport has been shown to be modulated by the effects of 

n-3 fatty acids on its configuration within the membrane 

[126 - 128]. Imbalances in the activity of enzymes that 

maintain phospholipid homeostasis can facilitate 

pathological conditions resulting from membrane 

perturbations [129]. 

Mutations in the PLA2G6 gene which encodes Ca2+ 

dependent phospholipase A [iPLA2] have been linked to 

infantile neuroaxonal dystrophy which is characterized by 

motor and sensory impairment [130]. iPLA2 works to 

breakdown PC, generating free fatty acids and lysoPC and 

serves as an antagonist to Pcyt1, which is a key enzyme in 

PC production [131]. Imbalances between the activity of 

iPLA2 and Pcyt1 can lead to lipid imbalances which are 

detrimental for membrane integrity [132]. One of the lipids 

that is most often liberated by iPLA2 is arachidonic acid 

[133, 134], an eicosanoid precursor which can facilitate PLD 

activation leading to the activation of subsequent signaling 

cascades [135]. Moreover, excessive iPLA2 mediated 

arachidonic acid release can lead to 4-hydroxy-2-nonenal [4-

HNE] production [136]. 4-HNE is a peroxidized product of 

arachidonic acid which can have a significant impact on cell 

functions by forming protein adducts and neuroaxonal 

dystrophy [137, 138]. Additionally, a subset of individuals 
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with mutations in the PLA2G6 gene develops brain iron 

deposits and abnormal EMG readings likely resulting from 

axonal swelling and deterioration [139]. The mechanism for 

brain iron accumulation is unclear but it is likely due to 

many factors from the dysfunction of proteins involved with 

iron transport and storage [140] and the ability for iron to 

participate in the Fenton reaction to generate free radicals 

from products of mitochondrial respiration [141]. 

 

Conclusion 

Choline is implicated in many biological processes 

like phospholipid biogenesis, FA oxidation, pregnancy and 

neurological development. However, a large proportion of 

the North American population is lacking in dietary choline 

consumption which is implicated in fatty liver, insulin 

resistance and obesity. As a result, it is imperative to 

increase choline consumption to support early life 

development and to help diminish the prevalence of adult 

onset metabolic disorders. Recommended intakes of the 

nutrients required for optimal health typically focus on a 

small number of nutrients. However, in reality, all nutrients 

are required in adequate amounts for optimal health, 

including nutrients such as choline which are often 

overlooked in the Western diet. The most important point 

of this review is that dietary choline deficiency is rampant in 

the Western world, and this can have widespread 

deleterious metabolic consequences. 
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Figures 

 

Figure 1: Integration of choline into general membrane phospholipid metabolism. 

After entering the cell by the choline like transporter like 1 (CTL1), choline (Cho) is channeled into the CDP-

choline (Kennedy) pathway through two sequential activations, to P-Cho by choline kinase (CK) and CDP-Cho by the 

cytidylyltransferase Pcyt1. CDP-Cho and diacylglycerol (DAG) then produce PC in the final, CTP transferase step of the 

pathway. Cho could be metabolically released from PC by the action of PLD and PSS1, or from lyso PC produced by 

phospholipase A2 (PLA). Additional PC and consequently Cho are produced endogenously from 

phosphatidylethanolamine (PE). PE is made de novo by the CDP-Etn brunch of the Kennedy pathway and additionally 

from phosphatidylserine (PS) by PS decarboxylation (PSD). To complete the membrane phospholipid cycle, PS is made 

from both PC and PE by base-exchange mechanisms driven by PS synthase 1 and PS synthase 2, respectively. 
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Figure 2: Interplay between choline oxidation, one-carbon metabolism and CDP choline pathway. 

A significant portion of choline is metabolically lost by a sequential mitochondrial oxidative demethylation to betaine, 

dimethylglycine, sarcosine, and the final amino acid product glycine. The process includes three demethylation steps where 

the choline oxidation product betaine donates first methyl group to homocysteine (Hcy), to regenerate methionine (Met), 

while the remaining methyl groups are donated to tetrahydrofolate (THF) to regenerate 5-methy-THF. The choline 

demethylation degradation process includes multiple enzymes in the order of betaine aldehyde dehydrogenase-BADH, 

betaine methyltransferase-BHMT, DMGDH–dimethylglycine dehydrogenase, GNMT–sarcosine dehydrogenase, glycine N-

methyltransferase, SARDH and serine hydroxy- methyltransferase SHMT2. On the other hand, the product of the one-carbon 

cycle, S-adenosyl methionine (SAM) is utilized for the production of PC by the PE methylation pathway, which regenerates PC 

and choline for further use. Unmethylated homocysteine (Hcy) is degraded to cysteine by the trans-sulfuration pathway. The 

Met/Hcy cycle includes MS– methionine synthase, MT–methyltransferase, SAHH–S-adenosylhomocysteine hydrolase, CBS–

cystathionine β-synthase, and CGL–cystathionine γ-lyase. 
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