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INTRODUCTION 

Breast cancer is the world’s most prevalent cancer and 

the leading cause of cancer death among women worldwide 

[1-3]. While tremendous strides have been made, a 

substantial portion of breast cancer occurrence cannot be 

adequately explained by known risk factors [4-7]. Almost 30 

years ago the eminent epidemiologist, Dr. Trichopoulos, 

hypothesized that breast cancer originates in-utero [8]. 

Interest in this hypothesis has increased markedly [9-23] 

including a very recent call for the specific examination of 

endocrine-disrupting chemicals that act during “windows of 

susceptibility” [9]. The fetal origin hypothesis of breast 

cancer proposes that in utero exposures [e.g., 

diethylstilbestrol use] alter fetal cell development and, 

thereby, trigger a chain of biologically linked events 

[impaired fetal growth, adverse birth outcomes, and 

postnatal accelerated growth] that ultimately leads to 

increased breast cancer risk among offspring [24-26]. 

Because of the lack of long-term longitudinal studies that 

start during pregnancy, most research testing this 

hypothesis has relied upon indirect measures of adverse 

pregnancy outcomes, such as maternal and infant 

anthropometry [e.g. pre-eclampsia, birth size] or perinatal 

factors [gestational age, twin birth] [26-35]. However, a 

recent report from a long-term cohort study [36] that 

directly measured levels of in utero exposure to 

Dichlorodiphenyltrichloroethane [DDT] strongly support the 

fetal origin hypothesis of breast cancer. Cohn et al. [36] 

based on the California Child Health and Development 

Study [CHDS] show that in-utero exposure to DDT is 

associated with breast cancer risk in female offspring, with a 

nearly 4-fold increased risk for those exposed to o,p’-DDT in 

the highest quartile. Notably, earlier studies of DDT/DDE 

exposure levels among adult women showed no such 

increased risk – evidence that in utero exposure may be a 

susceptibility window of breast cancer. Since adult 
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exposures fail to explain a substantial part of breast cancer 

occurrence, ascertaining whether there is, in fact, a fetal 

‘window of vulnerability’ is an urgent scientific goal, 

essential to identifying new opportunities to potentially 

prevent breast cancer.  

 

1. Indirect evidence that in utero exposure 

increases breast cancer risk  

Because of the long induction period from birth to 

breast cancer occurrence in adulthood, early studies were 

forced to largely rely on indirect evidence using various 

proxies of in utero exposures (such as birth weight and 

length, and maternal weight gain) [26-29]. This evidence has 

been extensively reviewed [20, 21, 26-29, 37, 38] and is 

briefly summarized below.  

 

1.1 Pregnancy complications as indicators of prenatal 

exposures and breast cancer in offspring: The 

pregnancy complications most intensively studied for their 

association with breast cancer risk among daughters include 

maternal pre-eclampsia or eclampsia. Studies showed that 

daughters of women who develop toxemia during 

pregnancy (preeclampsia/eclampsia) have a significant 10 to 

60 percent lower risk of breast cancer than daughters of 

normotensive mothers. Perhaps similarly, daughters of 

mothers with a lifetime history of diabetes have also been 

found to be at a decreased risk of breast cancer, especially 

for premenopausal breast cancer [28, 29, 39]. These studies 

have viewed toxemia as a surrogate for low estrogen 

exposure in utero, supporting the hypothesis of a direct 

relationship between in utero estrogen levels and breast 

cancer risk among offspring.  

 

1.2 Perinatal factors as surrogates of prenatal exposures 

and breast cancer in offspring: Various perinatal factors 

have been associated with breast cancer risk suggesting that 

in utero exposures are important in breast carcinogenesis. A 

relatively consistent positive association of breast cancer 

risk associated with birth weight and birth length strongly 

suggests in utero exposure influences on subsequent breast 

cancer risk [26, 27, 40-43]. Among positive reports, a U-

shaped or J-shaped association was reported between birth 

weight and breast cancer risk in some studies [44-51] while 

a positive linear relationship has been found in other 

studies [24, 52-56]. Preterm birth is reported to be 

associated with an increased risk of breast cancer in some 

[13, 49, 56-58] but not all studies [44, 51-53, 59, 60]. 

Preterm birth female infants were found to have 10 to 20 

times higher serum follicle-stimulating hormone 

concentrations compared with full term female infants [61], 

the raised serum concentrations of gonadotropins in 

preterm female infants might lead to ovarian hyper 

stimulation that increases estradiol concentrations and 

increase breast cancer risk [57, 62]. Twinning [29] 

particularly dizygotic twins [7, 63-65] that is associated with 

higher levels of pregnancy estrogens [66, 67] has been 

associated with an increased risk of breast cancer among 

offspring. Higher maternal age at delivery has been 

inconsistently associated with an increased risk of breast 

cancer in daughters [27-29] and it is known that 

concentrations of estrogen in maternal blood during 

pregnancy are higher in older women [68, 69]. These 

perinatal factors have been associated with pregnancy 

estrogens or insulin and insulin-like growth factors [8, 16] 

which are important regulators of somatic growth during 

fetal life and childhood [70]. It should be noted that high 

levels of IGFs (like estrogens) may also result in an increased 

number of stem cells and/or increased mitosis in the 

developing mammary gland [24].  

 

1.3 Postnatal accelerated growth and risk of breast cancer: 

Evidence strongly suggests that accelerated postnatal or 

early childhood growth predicts later breast cancer and 

modifies the relationship between birth size and breast 

cancer risk [24, 71-73]. A UK national cohort study showed 

that the effect of birth weight on breast cancer differ 

significantly based on height at age 7 years, suggesting a 

significant interaction between birth weight and childhood 

growth on breast cancer risk [24]. Another UK report 

showed that women who grow faster in childhood were at 

particularly increased risk of breast cancer [72]. Studies 
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have shown that rapid childhood growth increases breast 

cancer risk and in utero effects may be modified by 

childhood growth velocity. A cohort study of 117,415 Danish 

women showed that high birth weight, earlier age of peak 

growth [between ages 8 – 14 years], high stature at 14 

years, low BMI at 14 years were independent risk factors for 

breast cancer [73]. A systematic review [74] showed that 

rapid catch-up growth of LBW neonates following reduced 

intrauterine development is a more important factor than 

LBW alone for adult diseases.  

 

1.4 Intrauterine diethylstilbestrol [DES] exposure and 

breast cancer in offspring: DES is a synthetic estrogen 

widely used by pregnant women in the 1950s and 1960s to 

reduce the risk of fetal loss [75]. Studies showed that 

women exposed to DES in utero are at an increased risk of 

developing breast cancer [76-79]. Daughters of mothers 

who took DES during pregnancy have two times higher 

breast cancer risk than women who were not exposed to it 

[78-81]. This risk may extend to their granddaughters as 

well [76]. The reason for the increased breast cancer risk of 

DES in utero exposure may not only be due to elevated 

pregnancy estrogenic environment, but may also be 

attributable to epigenetic alterations that target genes 

regulating stem cells and prevent differentiation of their 

daughter cells [5]. Strikingly, DES use during pregnancy has 

also been associated with a higher risk of SGA and preterm 

birth among offspring [82] comparable to the outcomes 

observed following in utero DDE exposure by Longnecker et 

al. [35] and several smaller studies [30-34].  

 

2. Direct and quantitative evidence that in utero 

DDT exposure increases breast cancer risk 

Cohn’s cohort study [36] is the only direct, quantitative 

study to date to prospectively link in utero DDT exposure to 

increased risk of breast cancer in offspring. In studying DDT 

exposure and breast cancer risk, Cohn and colleagues 

creatively used blood samples largely collected 1-3 days 

after delivery from the California Child Health and 

Development Study [CHDS] to investigate breast cancer risk 

in two generations: a] the female offspring; and b] the 

pregnant mothers themselves.  

 

2.1 Study of offspring linking in utero DDT exposure to 

breast cancer risk: In a nested case control study, Cohn et 

al. [36] quantitatively assessed o,p’-DDT, p,p’- DDT, and 

p,p’-DDE levels in blood samples collected 1-3 days after 

delivery for 118 breast cancer cases and 354 controls 

among the female offspring. Out of the 3 measured DDT 

isomers, the study found that elevated maternal perinatal 

serum o,p’-DDT significantly predicted a nearly 4-fold 

increase in the daughter’s risk of breast cancer. Cohn’s 

nested case control study is the only direct, quantitative 

study to date to prospectively link in utero DDT exposure to 

increased risk of breast cancer in offspring and thus filled a 

major gap by directly measuring DDT exposures soon after 

birth and breast cancer risk in offspring.  

 

2.2 Studies of mothers by age of first DDT exposure and 

age at diagnosis of breast cancer: Using the same blood 

samples collected 1-3 days after delivery, Cohn et al. 

conducted two prospective, nested case–control studies of 

DDT exposure and breast cancer among the mothers 

themselves. The blood samples were collected when female 

study participants were, on average, approximately 26 years 

old [83, 84]. Accordingly, due to the long half-life of DDT, 

presence of DDT during pregnancy presumably reflected 

exposure at earlier ages. The authors combined information 

on levels of DDT [during pregnancy] and secular trends in 

DDT exposure in the US to generate several new findings. 

The first nested case control study [83] involving 129 cases 

and 129 controls found that, out of the 3 measured DDT 

isomers [o,p’-DDT, p,p’- DDT, and p,p’-DDE], high levels of 

serum p,p´-DDT during pregnancy predicted a statistically 

significant 5-fold increased risk of breast cancer, for a 

specific subset of women. That is, women who were born 

after 1931, and who were under 14 years of age in 1945, 

when DDT came into widespread use. The authors 

concluded that exposure to p,p´-DDT early in life [before 

puberty], but not later, may increase breast cancer risk. The 

recently published second nested case control study [84] 
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involving 153 new cases and 432 controls presented the 

joint effects of p, p’-DDT, age at first exposure, and age at 

diagnosis on breast cancer risk. Among women estimated to 

have first been exposed before age 3 years [based on age in 

1945], p, p’-DDT was associated with increased risk of early 

breast cancer [< 50 years] but not later breast cancer [ages 

50–54 years]. Among women estimated to have been first 

exposed from ages 3 to 13 years, p, p’-DDT was associated 

with increased risk of both early and late breast cancer. 

Among women first exposed after age 13 years, p, p’- DDT 

was associated only with increased risk of later breast 

cancer [ages 50–54 years]. Based on these results, the study 

concluded that risk of breast cancer associated with DDT 

exposure depended on timing of first exposure and 

diagnosis age, supporting the hypothesis that early life is a 

critical vulnerability window for mammary cancer [85-87].  

In conclusion, these nested case control reports are 

significant because previous studies of body levels of 

DDT/DDE and other organochlorines in adult women and 

breast cancer in the US, including our own, were largely 

negative [88-94] Cohn’s findings [36, 83, 84] suggest that 

risk of breast cancer associated with DDT exposure depends 

upon timing of exposure – with exposure that starts in utero 

and possibly very early life (but not in adulthood) 

determining breast cancer effects. 

  

3. Direct evidence showing that in utero 

exposure to DDT/DDE may trigger a cascade of 

biologically linked events that ultimately 

contributes to increased risk of breast cancer 

among offspring 

Using a South African birth cohort, Murray et al. [95] 

recently reported that p,p’-DDT and p,p’-DDE serum 

concentrations were associated with hypertensive disorders 

of pregnancy while an earlier study by Savitz et al. [96] did 

not find an association of DDT exposure with preeclampsia . 

Several studies have also reported an increased risk of 

hypertension associated with higher levels of DDT exposure 

[97-102].  

A large cohort study by Longnecker et al. [35] measured 

serum levels of p,p  -DDT and p,p  -DD  and found that in 

utero exposure to p,p  -DD  significantly increased   A risk. 

A significant dose response relationship was reported 

between maternal p,p  -DDE levels during pregnancy and 

adverse birth outcomes. The adjusted SGA ORs for each 

increasing quintile of DDE were 1, 1.9, 1.7, 1.6, 2.6, 

respectively (trend p=0.04). Longnecker’s findings have 

since been replicated by several smaller studies [30, 34, 

103-111] including our own [112] although some 

discrepancies remain [113-115]. 

Importantly, a recent study from Berkeley using the 

South Africa VHEMBE birth cohort showed that maternal 

serum p,p’-DDT concentration was consistently and 

positively associated with accelerated postnatal growth, 

including higher BMI-for-age in girls aged at 1 and 2 years of 

age [116]. A recent small cohort study from California 

involving 240 children showed that in utero exposure to 

DDT and DDE affected early childhood growth and 

significantly increased the risk of obesity at 12 years among 

boys, while non-significantly increasing the obesity risk 

among girls [117]. A study from China [118] showed that 

women exposed to the highest quartile of DDT/DDE had a 

significantly younger age at the time of menarche than 

those in the lowest quartile. A recent report from the Child 

Health and Development Studies by Cirillo et al. [119] 

showed that grand maternal perinatal serum DDT is 

associated with granddaughter’s early menarche and adult 

obesity, the risk factors for female breast cancer.  

This collective evidence begins to illuminate a general 

model for the fetal origins of breast cancer associated with 

DDT exposure in utero. Namely, that in utero exposure to 

DDT impairs fetal development, results in subsequent early 

childhood accelerated growth and, eventually, increased 

risk for breast cancer among adult offspring.  

 

4. Biological Plausibility  

Experimental studies have shown that fetal life is an 

important window of susceptibility for mammary cancer 

[120-125]. In humans, however, the underlying mechanisms 
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linking in utero exposures to subsequent breast cancer 

among offspring are not fully understood. In utero 

exposures may increase the number of breast stem cells 

during the fetal period and, therefore, the number at risk of 

malignant transformation. The likelihood of breast cancer 

occurrence depends on the number of mammary tissue 

specific stem cells and this is determined early in life, 

notably in utero or during immediate postnatal life [17-19]. 

In utero exposures can modify the epigenome and 

epigenetic modifications in the fetus might lead to changes 

in mammary gland development, such as increased 

vulnerability of epithelial targets [perhaps stem cells] for 

malignant transformation that alter the susceptibility to 

factors that can initiate breast cancer [19]. Breast tissue 

undergoes rapid proliferation and development in utero, 

which creates a fertile soil for cancer initiation representing 

a critical window of increased susceptibility for mammary 

carcinogenesis [8, 10, 17, 18, 126-128]. Thus, breast cancer 

may be diagnosed over the lifetime but begin in utero.  

 

5. Major gaps in studying the fetal origin 

hypothesis  

•  tudies of fetal origin hypothesis to date have largely 

relied upon indirect evidence. Most previous studies of the 

fetal origin hypothesis of breast cancer have been based on 

indirect evidence of breast cancer risk associated with 

various proxies of in utero exposures (such as birth weight, 

birth length) as summarized previously. This is mainly due to 

the fact that the induction period is long from in utero 

exposure to breast cancer in adulthood taking about 50-60 

years, but there is a general lack of long-term longitudinal 

prenatal cohort studies with direct prospective measures 

(bio specimens) of the prenatal environmental milieu. 

•  tudies that explicitly test the “fetal origin of breast 

cancer” hypothesis in the same cohort population have 

been sorely lacking. No prior study, including the prior DDT-

breast cancer study [36], the DDT-adverse birth outcome 

study [30-35] and the DDT-early childhood growth and 

menarche studies [116-119] has directly examined, in the 

same cohort population, the extent to which in utero 

exposure to DDT is associated with intrauterine growth 

restriction (e.g., SGA), subsequent accelerated growth and –

ultimately- increased risk of breast cancer. 

• Cohn’s DDT-breast cancer study [36] is the only 

published longitudinal study so far with the ability to 

investigate whether in utero DDT exposure significantly 

increases the risk of breast cancer. It is important to both 

extend these findings and test DDT-related fetal origin 

hypotheses. Millions of current adult women were heavily 

exposed in utero and are potentially at increased risk of 

breast cancer [36]. 

• Need to test in utero exposure to multiple 

environmental pollutants and breast cancer risk. It is 

needed to determine the relationship between in utero 

exposure to multiple environmental pollutants and breast 

cancer risk in offspring, including persistent organic 

pollutants (POPs), metals and other environmental 

pollutants. These pollutants could jointly produce their 

impact or confound each other while their effects are 

evaluated in testing the fetal origins hypothesis of breast 

cancer.  

 

CONCLUSION 

As stated previously, although tremendous efforts have 

been made, a substantial portion of breast cancer 

occurrence cannot be adequately explained by known risk 

factors. If we are to make headway in preventing breast 

cancer, we must further enhance our understanding of the 

etiology of this disease, critically highlighting its modifiable 

risk factors. Only in this way can we positively impact the 

occurrence of the disease that is currently the leading cause 

of cancer death among women worldwide. Both the direct 

and indirect evidence strongly supports the hypothesis of 

fetal origin of breast cancer. It is critically important to 

advance our understanding of the hypothesis by 

ascertaining whether there is a fetal ‘window of 

vulnerability’ for breast cancer as proposed, which is 

essential to identifying new opportunities to prevent breast 

cancer considering the fact that adult exposures fail to 

explain a substantial part of breast cancer occurrence.  
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We are well aware that there are not many prenatal 

cohorts available for directly testing the fetal origin 

hypothesis by linking prenatal exposure to fetal 

development, pregnancy complication, adverse birth 

outcomes, postnatal and early childhood growth and 

adiposity, age at menarche, and ultimately breast cancer 

risk in offspring. Until the current prenatal cohort studies 

mature and are available for studying the hypothesis, 

efforts could still be made by testing the relationship 

between prenatal exposures and various indirect measures 

involving early life events (such as adverse birth outcomes, 

postnatal and early childhood growth and adiposity, and 

age at menarche) since these events have been linked to 

the risk of breast cancer, and are in fact likely to be the 

intermediate steps in the causal pathways—reflecting the 

chain of biologically linked events from the same in utero 

exposures that lead to increased susceptibility of the tissue 

to further insults – ultimately, leading to increased risk of 

breast cancer in the offspring. These early life events may 

mediate the association between in utero exposures and 

breast cancer risk. By advancing the fetal origin hypothesis, 

these efforts may lead to refine strategies and reach the 

ambitious goal of identifying new opportunities to prevent 

and control this deadly disease. 
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